< アンテナ博士の電波講座|博士の電波講座|D2ラボ|DENGYO 日本電業工作株式会社

トップ > D2ラボ > 博士の電波講座 > アンテナ博士の電波講座 > 【第3回】アンテナの利得

D2ラボ

アンテナ博士の電波講座

アンテナの利得
ビーム幅と利得

 講座②で述べたように、縦方向にダイポールアンテナを並べ放射部を長くすると、垂直面内のビームが鋭くなります。またダイポールアンテナの背後に金属製の反射器を配置し横幅を拡げると、水平面内のビームが鋭くなります。この二つに共通していることは、放射部分の長さを拡げるとビームは逆に鋭くなるということです。

図7. ビーム幅と利得

 ビームが鋭くなると、その中身は放射された電波のエネルギーですから、送信電力が同じなら電波がより遠くまで届きます。このことを“アンテナの利得”が高いといいます。高周波送信アンプであれば、アンプの利得を上げることで送信出力を上げて遠くまで電波を届かせますが、アンテナでは放射エネルギーを集中させることで利得を上げるという訳です。

 図7にこの関係を示しました。座標の原点にあるアンテナから周囲に一様に放射されると、電波は球状に拡がります。
球の半径を1とすると表面積は です。一方、指向性アンテナの場合は図のメガホンのように電波が集中しており、出口の面積は 2π(1-cosθ) です。したがって表面でのエネルギー強度は表面積の逆数の比となり、これが利得です。即ちアンテナの利得を G で表すと(1)になります。

 少し計算してみますと、 θ = 30° で 、 G = 14.9倍 = 11.7dBiθ = 15°G = 58.7倍 = 17.7dBi になります。ここで G はいわば“G倍”という意味なのですが、通常はその対数をとって、10 × log10G = G(dB) で表記します。また図7のような等方性(isotropic)の指向性と比較した場合は dBi と表記します。ついでですが、比較の基準にダイポールアンテナを用いることがあり、その場合、つまりダイポールアンテナに較べて何倍か、という場合は dBd と表記します。ダイポールアンテナの利得は 2.15dBi ですので、 dBidBd の関係は(2)となります。

指向性とビーム幅

図7. ビーム幅と利得

 さて、アンテナの指向性とは、電波の放射される強度の角度特性、というように表現できます。図7に示したメガホンのような指向性は大変望ましいものの、現実に実現することは困難です。実際の指向性アンテナは図8のようになります。

 一般的にアンテナでは必要な方向を向いたメインビームの他に、側方にサイドローブ、後方にもバックローブとよぶ余分な放射がでます。前項で説明したビーム幅は、図のように利得最大値から 3dB 下がる(電力が半分になる) 角度幅で表現します。また前方と後方に放射されるレベルの比をF/B比と呼びます。

アンテナの形状と指向性

 さてそうしたアンテナの指向性や利得はどのように得られるのでしょうか。望ましい指向性はそのアンテナが用いられる場面によって様々です。例えば、

  • a. 携帯内蔵アンテナでは、鞄やポケットの中で、どんな姿勢でも使えるようになるべく等方性の指向性
  • b. 携帯電話の基地局アンテナでは、エリヤに合わせて垂直面内はやや鋭く、水平面内は広いビームが望ましい
  • c. 遠方と通信するパラボラアンテナであれば、できるだけ鋭いビームをもった指向性

ということになります

 これを考えるうえで助けになるのが、さきに述べたような、ビーム幅 θBW(ラジアン)と、アンテナの該当面の幅 D の関係です。これは次のような式で概ね表されます。ここで λ (ラムダ)は使用する電波の波長です。

さらにアンテナの利得 G は次の式(4)を用いて表現されます。

ここで、A はアンテナの面積です。即ち四角いアンテナであれば、A = 縦の長さ×横幅であり、円形のアンテナならば A = π×半径2 です。また η(イータ)はアンテナの効率ですが、これは放射部の面積をいかに効率よく使っているかを表わす係数です。1になることはほとんどなく、通常は0.3~0.8の範囲になりますが、ここはアンテナ設計者の腕の見せ所と言えます (^_^;)。ただし、コストであるとか、重量、耐風速などのおろそかにできない項目も多々ありますが。

ここで少し実例を示しましょう。図9では3種類のアンテナの形状と利得、指向性の計算例を示しました。ダイポールアンテナとダイポールと反射器を組合せた90°ビームアンテナ、さらにそれを縦方向に4段組合せた4素子のアレイアンテナです。ここでダイポールアンテナの幅について実効幅という記載があります。ダイポールアンテナは例えば針金のような金属でも作れますので、実寸法は波長に比較しかなり小さくなります。しかしダイポールが作る電磁界は金属棒の周囲に一定の拡がりを持ちます。計算によるとその幅は表に記載のように0.25λ程度になります。

図9.計算例
形状 大きさ 利得 垂直面内指向性 水平面内指向性
縦方向長さ 0.5λ
電気的横幅 0.25λ
(幅は実寸法とは異なる実効幅)
2.1 dBi
縦方向長さ 0.8λ
横幅     0.5λ
7.0 dBi
縦方向長さ 3.2λ
横幅     0.5λ
13.0 dBi
コラム 小さくて利得の高いアンテナはないのか?

 こういう質問をときたま受けます。最近の電子機器は小型で高性能ですからアンテナについても同じように期待されるのだと思います。しかしアンテナはパッシブな装置で、この節にも記載したように、利得はアンテナの面積(実効面積)でほぼ決まります。残念ながら。

前の講座へ
次の講座へ
  • DENGYOってこんな会社です ラボ潜入リポート
  • 簡単設置・設定 自営の長距離無線LAN FalconWAVE
製品のお問い合わせ・資料請求
購入御見積もり、資料請求などお気軽にお問い合わせ
フォームにてお問い合わせください。
お問い合わせ
カタログダウンロード
ソリューション製品のカタログをPDF形式で
ダウンロードしていただけます。
カタログダウンロード
ソリューション製品

ページトップへ戻る